top of page

Deep Learning: Comparison with Machine Learning


Deep learning is sometimes referred to as the intersection between machine learning and artificial intelligence. It is about designing algorithms that can make robots intelligent, such a face recognition techniques used in drones to detect and target terrorists, or pattern recognition / computer vision algorithms to automatically pilot a plane, a train, a boat or a car.

Many deep learning algorithms (clustering, pattern recognition, automated bidding, recommendation engine, and so on) -- even though they appear in new contexts such as IoT or machine to machine communication -- still rely on relatively old-fashioned techniques such as logistic regression, SVM, decision trees, K-NN, naive Bayes, Bayesian modeling, ensembles, random forests, signal processing, filtering, graph theory, gaming theory, and many others.

Example of deep learning algorithms for clustering

As a result, many deep learning practitioners call themselves data scientist, computer scientist, statistician, or sometimes engineer. In my opinion, deep learning also tries to automate some data science processes.

Some opinions expressed in this article may be those of a guest author and not necessarily Analytikus. Staff authors are listed http://www.datasciencecentral.com/profiles/blogs/deep-learning-definition-resources-comparison-with-machine-learni

POST

USA

SPAIN

MEXICO

© 2025 by analytikus, LLC  - Privacy Policy

United States

  • LinkedIn
  • Twitter
  • Youtube
  • Spotify
Microsoft Gold. Partner
Badge Microsoft Partner Pledge
OEA Microsoft Advanced Partnerng
Endeavor Education Award
GESA Education Award
HOLONIQ Award 2020

Disclaimer: The products and solutions presented on this website are at different stages of development, ranging from conceptualization and research to experimental phases, pilot programs with educational institutions, and full-scale production deployments. Analytikus continuously works on the evolution and enhancement of its technologies, meaning that some features may still be under development or adaptation to meet the needs of the education sector.

bottom of page